
Compsci 677: Distributed and OS Lec. 20

Distributed Web Applications
• WWW principles

• Case Study: web caching as an illustrative example

– Invalidate versus updates

– Push versus Pull

– Cooperation between replicas

1

Compsci 677: Distributed and OS Lec. 20

Traditional Web-Based Systems

• Client-server web applications

2

Compsci 677: Distributed and OS Lec. 20

Web Browser Clients

• The logical components of a Web browser.

3

Compsci 677: Distributed and OS Lec. 20

The Apache Web Server

• The general organization of the Apache Web server.

4

Compsci 677: Distributed and OS Lec. 20

Proxy Servers

• Using a Web proxy when the browser does not speak FTP (or for caching and
offloading)

5

Compsci 677: Distributed and OS Lec. 20

Multitiered Architectures

• Three tiers: HTTP, application, and database tier

6

Compsci 677: Distributed and OS Lec. 20

Web Server Clusters

7

• Clients connect to front-end dispatcher, which forwards requests to a replica (recall
discussion from Cluster scheduling)

• Each replica can be a tiered system

– For consistency, database can be a common/non-replicated

Compsci 677: Distributed and OS Lec. 20

Web Server Clusters (2)

• A scalable content-aware cluster of Web servers.

8

Compsci 677: Distributed and OS Lec. 20

Web Clusters
• Request-based scheduling

• Forward each request to a replica based on a policy

• Session-based scheduling

• Forward each session to a replica based on a policy

• Scheduling policy: round-robin, least loaded

• HTTP redirect vs TCP splicing vs TCP handoff

9

Compsci 677: Distributed and OS Lec. 20

Elastic Scaling
• Web workloads: temporal time of day, seasonal variations

• Flash crowds: black friday, sports events, news events

• Overloads can occur even with clustering and replication

• Elastic scaling: dynamically vary capacity based on workload (aka auto-scaling, dynamic provisioning)

• Two approaches:

• Horizontal scaling: increase or decrease # of replicas based on load

• Vertical scaling: increase or decrease size of replica (e.g., # of cores allocated to container or VM) based on load

• Proactive versus reactive scaling

• Proactive: predict future load and scale in advance

• Reactive: scale based on observed workload
• Common in large cloud-based web applications

10

Compsci 677: Distributed and OS Lec. 20

Micro-services Architecture

• Micro-services: application is a collection of smaller services

• Example of service-oriented architecture

• Modular approach to overcome “monolith hell”

• Each microservice is small and can be maintained independently of others

• Each is independently deployable

• Clustering and auto-scaling can be performed independently

11

Compsci 677: Distributed and OS Lec. 20

Scaling Web applications
• Three approaches for scaling

12

https://microservices.io/articles/scalecube.html

Compsci 677: Distributed and OS Lec. 20

Web Documents

• Six top-level MIME types and some common subtypes.

13

Compsci 677: Distributed and OS Lec. 20

HTTP Connections

14

• Using nonpersistent connections.

Compsci 677: Distributed and OS Lec. 20

HTTP 1.1 Connections

15

• (b) Using persistent connections.

Compsci 677: Distributed and OS Lec. 20

HTTP Methods

• Operations supported by HTTP.

16

Compsci 677: Distributed and OS Lec. 20

HTTP 2.0
• Http 1.1 allows pipelining over same connection

• Most browsers do not use this feature

• HTTP v2: Designed to reduce message latency

• No new message or response types

• Key features

• Binary headers (over text headers of http 1.1)

• Uses compression of headers and messages

• Multiplex concurrent connections over same TCP connection

• each connection has multiple “streams”, each carrying a request and response

• No blocking caused by pipelining in http 1.1

17

See https://developers.google.com/web/fundamentals/performance/http2/

Compsci 677: Distributed and OS Lec. 20

Web Services Fundamentals

18

• The principle of a Web service.

Compsci 677: Distributed and OS Lec. 20

Simple Object Access Protocol

• An example of an XML-based SOAP message.

19

Compsci 677: Distributed and OS Lec. 20

RESTful Web Services
• SOAP heavy-weight protocol for web-based distributed computing

• RESTful web service: lightweight , point-to-point XML comm

• REST=representative state transfer

• HTTP GET => read

• HTTP POST => create, update, delete

• HTTP PUT => create, update

• HTTP DELETE => delete

• Simpler than RPC-sytle SOAP

• closer to the web

20

Compsci 677: Distributed and OS Lec. 20

RESTful Example

GET /StockPrice/IBM HTTP/1.1
Host: example.org
Accept: text/xml
Accept-Charset: utf-8

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<s:Quote xmlns:s="http://example.org/stock-service">
 <s:TickerSymbol>IBM</s:TickerSymbol>
 <s:StockPrice>45.25</s:StockPrice>
</s:Quote>

21

Compsci 677: Distributed and OS Lec. 20

Corresponding SOAP Call
GET /StockPrice HTTP/1.1
Host: example.org
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0a?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"
 xmlns:s="http://www.example.org/stock-service">
 <env:Body>
 <s:GetStockQuote>
 <s:TickerSymbol>IBM</s:TickerSymbol>
 </s:GetStockQuote>
 </env:Body>
</env:Envelope>

HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"
 xmlns:s="http://www.example.org/stock-service">
 <env:Body>
 <s:GetStockQuoteResponse>
 <s:StockPrice>45.25</s:StockPrice>
 </s:GetStockQuoteResponse>
 </env:Body>
</env:Envelope>

22

Compsci 677: Distributed and OS Lec. 20

SOAP vs RESTful WS
• Language, platform and

transport agnostic

• Supports general distributed
computing

• Standards based (WSDL,
UDDI dir. service...)

• Builtin error handling

• Extensible

• More heavy-weight

• Harder to develop

• Language and platform
agnostic

• Point-to-point only; no
intermediaries

• Lack of standards support for
security, reliability (“roll you
own”

• Simpler, less learning curve,
less reliance on tools

• Tied to HTTP transport layer
• More concise

23

Compsci 677: Distributed and OS Lec. 20

Web Proxy Caching

• The principle of cooperative caching.

24

Compsci 677: Distributed and OS Lec. 20

Web Caching
• Example of the web to illustrate caching and replication issues

– Simpler model: clients are read-only, only server updates data

browser Web Proxy

cache

request

response

request

response

Web

server

browser Web

server

request

response

25

Compsci 677: Distributed and OS Lec. 20

Consistency Issues
• Web pages tend to be updated over time

– Some objects are static, others are dynamic

– Different update frequencies (few minutes to few weeks)

• How can a proxy cache maintain consistency of cached data?

– Send invalidate or update

– Push versus pull

26

Compsci 677: Distributed and OS Lec. 20

Push-based Approach
• Server tracks all proxies that have requested objects

• If a web page is modified, notify each proxy

• Notification types

– Indicate object has changed [invalidate]

– Send new version of object [update]

• How to decide between invalidate and updates?

– Pros and cons?

– One approach: send updates for more frequent objects, invalidate for rest

proxy Web

server

push

27

Compsci 677: Distributed and OS Lec. 20

Push-based Approaches
• Advantages

– Provide tight consistency [minimal stale data]

– Proxies can be passive

• Disadvantages

– Need to maintain state at the server

• Recall that HTTP is stateless

• Need mechanisms beyond HTTP

– State may need to be maintained indefinitely

• Not resilient to server crashes

28

Compsci 677: Distributed and OS Lec. 20

Pull-based Approaches

• Proxy is entirely responsible for maintaining consistency

• Proxy periodically polls the server to see if object has changed

– Use if-modified-since HTTP messages

• Key question: when should a proxy poll?

– Server-assigned Time-to-Live (TTL) values

• No guarantee if the object will change in the interim

proxy Web

server

poll

response

29

Compsci 677: Distributed and OS Lec. 20

Pull-based Approach: Intelligent Polling

• Proxy can dynamically determine the refresh interval

– Compute based on past observations

• Start with a conservative refresh interval

• Increase interval if object has not changed between two successive polls

• Decrease interval if object is updated between two polls

• Adaptive: No prior knowledge of object characteristics needed

30

Compsci 677: Distributed and OS Lec. 20

Pull-based Approach
• Advantages

– Implementation using HTTP (If-modified-Since)

– Server remains stateless

– Resilient to both server and proxy failures

• Disadvantages

– Weaker consistency guarantees (objects can change between two polls and proxy will contain stale data
until next poll)

• Strong consistency only if poll before every HTTP response

– More sophisticated proxies required

– High message overhead

31

Compsci 677: Distributed and OS Lec. 20

A Hybrid Approach: Leases
• Lease: duration of time for which server agrees to notify proxy of modification

• Issue lease on first request, send notification until expiry

– Need to renew lease upon expiry

• Smooth tradeoff between state and messages exchanged

– Zero duration => polling, Infinite leases => server-push

• Efficiency depends on the lease duration

Client Proxy Server

Get + lease req

Reply + lease
read

Invalidate/update
32

Compsci 677: Distributed and OS Lec. 20

Policies for Leases Duration
• Age-based lease

– Based on bi-modal nature of object lifetimes

– Larger the expected lifetime longer the lease

• Renewal-frequency based

– Based on skewed popularity

– Proxy at which objects is popular gets longer lease

• Server load based

– Based on adaptively controlling the state space

– Shorter leases during heavy load

33

Compsci 677: Distributed and OS Lec. 20

Cooperative Caching

• Caching infrastructure can have multiple web proxies

– Proxies can be arranged in a hierarchy or other structures

• Overlay network of proxies: content distribution network

– Proxies can cooperate with one another

• Answer client requests

• Propagate server notifications

34

Compsci 677: Distributed and OS Lec. 20

 Hierarchical Proxy Caching

Examples: Squid, Harvest

Server

Parent

HTTP

HTTP Read A
1

ICPICP

ICP

2

HTTP

3

Clients

Leaf Caches

35

Compsci 677: Distributed and OS Lec. 20

Locating and Accessing Data

• Lookup is local

• Hit at most 2 hops

• Miss at most 2 hops (1 extra on wrong hint)

Properties

(A,X)

Node X

Server
for B

Clients

Caches
Read A

Get A

Read B

Get B
Node Y

Minimize cache hops on hit Do not slow down misses

Node Z

36

Compsci 677: Distributed and OS Lec. 20

Edge Computing
• Web caches effective when deployed close to clients

• At the “Edge” of the network

• Edge Computing: paradigm where applications run on servers located at the edge of the network

• Benefits

• Significantly lower latency than “remote” cloud servers

• Higher bandwidth

• Can tolerate network or cloud failures

• Complements cloud computing

• Cloud providers offer edge servers as well as cloud servers

37

Compsci 677: Distributed and OS Lec. 20

Edge Computing Origins
• Origins come from mobile computing and web caching

• Content delivery networks

• Network of edge caches deployed as commercial service

• Cache web content (especially rich content: images, video)

• Deliver from closest edge proxy server

• Mobile computing

• devices has limited resources, limited battery power

• computational offload: offload work to more capable edge server

• low latency offload important for interactive mobile applications

• edge server sends results to the mobile

38

Compsci 677: Distributed and OS Lec. 20

Content Delivery Networks
• Global network of edge proxies to deliver web content

• edge clusters of varying sizes deployed in all parts of the world

• Akamai CDN: 120K servers in 1100 networks, 80 countries

• Content providers are customers of CDN service

• Examples: news sites, image-rich online stores, streaming sites

• Decide what content to cache/offload to CDN

• Embed links to cdn content: http://cdn.com/company/foo.mp4

• Consistency responsibility of content providers

• Users access website normally

• Some content fetched by browser from CDN cache

39

Compsci 677: Distributed and OS Lec. 20

CDN Request Routing
• Web request need to be directed to nearby CDN server

• Two level load balancing

• Global: decide which cluster to use to serve request

• Local: decide which server in the cluster to use

• DNS-based approach is common

• Special DNS server: resolve www.cnn.com/newsvideo.mp4

• DNS checks location of client and resolves to IP address of nearby CDN server

• Different users will get resolved to different edge locations

40

http://cdn.com/company/foo.mp4
http://www.cnn.com/newsvideo.mp4

Compsci 677: Distributed and OS Lec. 20

CDN Issues
• Which proxy answers a client request?

– Ideally the “closest” proxy

– Akamai uses a DNS-based approach

• Propagating notifications

– Can use multicast or application level multicast to reduce overheads (in push-based
approaches)

• Active area of research

– Numerous research papers available

41

Compsci 677: Distributed and OS Lec. 20

CDN Request Processing

• The principal working of the Akamai CDN.

42

Compsci 677: Distributed and OS Lec. 20

CDN Hosting of Web Applications

• Figure 12-21. Alternatives for caching and replication with Web applications.

43

Compsci 677: Distributed and OS Lec. 20

Mobile Edge Computing
• Use case: Mobile offload of compute-intensive tasks

• Example: augmented reality, virtual reality (mobile AR/VR)

• mobile phone or headset has limited resources, limited battery

• Low latency / response times for interactive use experience

• mobile devices may lack a GPU or mobile GPU may be limited

• Today’s smartphones are highly capable (multiple cores, mobile GPU, neural processor)

• mobile offload more suitable for less capable devices (e.g., AR headset)
• 5G cellular providers: deploy edge servers near cell towers

• industrial automation, autonomous vehicles

44

Compsci 677: Distributed and OS Lec. 20

Edge Computing Today
• Emerging approach for latency-sensitive applications

• Edge AI: run AI (deep learning) inference at edge

• home security camera sends feed, run object detection

• Low latency offload: autonomous vehicles, smart city sensors, smart home etc.

• Edge computing as an extension to cloud

• Cloud regions augmented by local regions

• Local regions are edge clusters that offer normal cloud service (but at lower latency) E.g.,
AWS Boston region

• Internet of Things (IoT) data processing sevices

45

Compsci 677: Distributed and OS Lec. 20

Specialized Edge Computing
• Edge accelerators: special hardware to accelerate edge tasks on resource

constrained edge servers

• Nvidia Jetson GPU, Google edge Tensor processing Unit (TUP), Intel
Vision Processing Unit (VPU)

• Example: IoT ML inference on edge accelerators

• Efficient inference on resource-constrained edge servers

46

Google Edge TPU Nvidia Jetson Nano GPU
Apple Neural

Engine

Compsci 677: Distributed and OS Lec. 20

 Cloud and Edge Architectures
• Offload to cloud, edge, specialized edge,

47

Traditional cloud

 (2-tier) Traditional edge

 (3-tier)
Specialized

 (3-tier)

IoT device

cloud

Edge node

cloud

IoT device

edge nodes
+ VPU/TPU

IoT device
with accelerator

cloud server
+ GPU/FPGA

